A NEURAL NETWORK MODEL FOR PREDICTING CHILDREN’S MATHEMATICAL GIFT

Margita Pavleković, Marijana Zekić-Sušac, Ivana Đurđević

Abstract


The aim of this paper was to model a neural network capable of detecting mathematically gifted fourth-grade elementary school pupils. The input space consisted of variables describing the five basic components of a child's mathematical gift identified in the body of previous research. The scientifically confirmed psychological evaluation of gift based on Raven's standard progressive matrices was used at the output. Three neural network models were tested on a Croatian dataset: multilayer perceptron, radial basis, and probabilistic network. The models' performances were measuredaccording to the average hit rate obtained on the test sample. According to the results, the highest accuracy is produced by the radial basis neural network, which correctly recognizes all gifted children. Such high classification accuracy shows that neural networks have the potential to serve as an effective intelligent decision support tool able to assist teachers in detecting mathematically gifted children. This can be particularly useful in schools in which there is a shortage of psychologists.
--------------------------------------------------------------------
Cilj ovoga rada bio je modeliranje neuronske mreže kojom bi se mogla otkriti matematička darovitost u učenika četvrtih razreda osnovnih škola. Ulaz se sastojao od varijabli izvedenih za opis pet osnovnih komponenata matematičke darovitosti u djece, a koje su ustanovljene u prethodnim istraživanjima. Kao izlazni rezultat upotrijebljena je znanstveno potvrđena psihološka evaluacija darovitosti utemeljena u Ravenovim progresivnim matricama. Trimodela neuronskih mreža testirana su na hrvatskim podatcima: višeslojni perceptron, mreža s radijalno zasnovanom funkcijom i probabilistička (vjerojatnosna) mreža. Rad mreža mjeren je u odnosu na prosječnu stopu pogodaka prikupljenih na testnom uzorku. Analiza je pokazala da je najvišu točnost postigla neuronska mreža s radijalno zasnovanom funkcijom, kojom semogu točno prepoznati sva darovita djeca. Tako visoka točnost uklasifikaciji pokazuje da neuronske mreže imaju potencijal služiti kao efektivan alat inteligentne odluke pomoću kojega bi učitelji mogli otkriti djecu s darovitošću za matematiku. To može biti osobito korisno u školama s manjkom psihologa.

Full Text:

PDF


DOI: https://doi.org/10.15516/cje.v13i1.106

Refbacks

  • There are currently no refbacks.